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Immiscible Cellular-Automaton Fluids 
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We introduce a new deterministic collision rule for lattice-gas (cellular- 
automaton) hydrodynamics that yields immiscible two-phase flow. The rule is 
based on a minimization principle and the conservation of mass, momentum, 
and particle type. A numerical example demonstrates the spontaneous 
separation of two phases in two dimensions. Numerical studies show that the 
surface tension coefficient obeys Laplace's formula. 
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Recently, Frisch et  aL (1) (FHP) introduced a discrete lattice-gas model for 
the numerical solution of the 2D incompressible Navier-Stokes equations. 
In their model, space, time, and the velocities of particles are discrete. Iden- 
tical particles of equal mass populate a triangular lattice, obey simple 
collision rules, and travel to neighboring sites at each time step. Because 
the model is entirely discrete, and because the evolution of a site is deter- 
mined by the state of the ;ite and its nearest neighbors, the lattice gas is a 
cellular automaton. (2) Despite its simplicity, the macroscopic behavior of 
the lattice-gas automaton asymptotically approaches continuum flow. Since 
its introduction, this new model of fluid dynamics has not only been the 
subject of extensive theoretical and numerical studies, ~ 7) but has also been 
extended to 3D (8) and applied to a wide range of problems (e.g., refs. %11). 

Here we introduce a simple yet fundamental extension of the lattice 
gas that leads to immiscible two-phase flow with interracial tension 
between fluid phases. In regions occupied by only a single phase, our 2D 
model is (barring irrelevant details) identical to the FHP gas. When two 
phases occupy the same region, however, we apply a new collision rule that 
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causes preferential grouping of like phases. To demonstrate the validity of 
our model, we provide empirical evidence that it correctly honors the 
physics of interfacial tension. Of course, the asymptotic arguments of FHP 
apply equally well to our model in regions of homogeneity. 

The equations of motion for immiscible two-phase flow are given by 
the Navier-Stokes equations within each phase, and by boundary 
conditions at the interfaces between phases. ~2'13) The incompressible 
Navier-Stokes equations are 

V ' u = O  

p Otu + p(u" V) u = - V p  +/~ V2u 

(1) 

(2) 

U 1 " n  ~ 112 �9 n = [ l i n  t " n (3) 

Here the subscripted velocities refer to the two phases and the interface; n 
is the unit normal to the interface. The second boundary condition is a 
dynamical description of the momentum flux across the interface. The 
requirement here is that the stress difference at the interface be balanced by 
surface tension. In 2D, this equation is 

T z . n - T  1.n=(o-/R) n (4) 

where ~ is the surface tension coefficient, R is the radius of curvature (con- 
sidered positive when the center of curvature is on side one), and T~ and T2 
denote the stress tensor T = - p I + # [ V u + ( V u )  T] in phases 1 and 2, 
respectively. 

Of these four equations, the FHP gas, after a rescaling of variables 
and macroscopic averaging, models the first two. The idea of FHP is to set 
up a triangular lattice, with identical particles traveling between neigh- 
boring sites at each time step. Up to six particles, each with unit velocity, 
may reside at a site, but there may be at most one particle moving in each 
of the six possible directions. When particles meet at the same site, they 
obey collision rules that conserve mass (particle number) and momentum. 
Macroscopic fields are obtained by coarse-grain averaging in space and 
time; the correspondence of these macroscopic fields to Eq. (1) and (2) is 
primarily due to the microscopic conservation of mass and momentum and 
the symmetries of the triangular lattice. 

where p denotes the density, u the velocity, p the pressure, and/~ the shear 
viscosity. Two boundary conditions govern the behavior of an interface. 
The first is the purely kinematical statement that the component of velocity 
locally normal to the boundary in each phase must equal the normal com- 
ponent of the interfacial velocity: 
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To model two-phase flow, one must satisfy not only Eq. (1) and (2), 
but also the boundary conditions (3) and (4). Our two-phase model is built 
upon the FHP foundation. We define two kinds of particles, and refer to 
them by color, "red" and "blue. ''(7'9) In addition to conserving mass and 
momentum, however, collisions must now also conserve the number of reds 
(or blues) and encourage the preferential grouping of like colors. 

We employ a version of the FHP model that includes zero-velocity 
"rest particles"(1'3'6); there are thus seven available velocities. The ith 
velocity vector is denoted by ei; Co = 0  and e~ through e 6 are unit vectors 
connecting neighboring sites on the triangular lattice. Red and blue 
particles may simultaneously occupy the same site, but not with the same 
velocity. The Boolean variable r i(x)e {0, 1} indicates the presence or 
absence of a red particle with velocity ei at lattice site x; the variable 
bi(x) e {0, 1 } plays the same role for a blue particle. The configuration at a 
site is thus completely described by the two seven-bit variables r = {ri, i =  
0,..., 6} and b = {b~, i = 0 ..... 6}. Note that bi and r~ cannot both equal one. 

Cohesion in real liquids results from short-range intermolecular forces 
of attraction. (~4) We model these short-range forces by allowing the 
particles at sites which are the nearest neighbors of site x to influence the 
configuration of particles at site x. Specifically, we define a local color flux 
and a local color field, and design collision rules such that the "work,' per- 
formed by the flux against the field is minimized, subject to the constraints 
of mass, momentum, and color conservation. 

The local color flux q[r(x), b(x)] is defined to be the difference 
between the net red momentum and net blue momentum at site • 

ql-r(x), b(x)]  -= ~ cil-r,(x) -- bi(x)] (5) 
i 

The local color field f(x) is defined to be the direction-weighted sum of the 
differences between the number of reds and the number of blues at 
neighboring sites [i.e., the microscopic gradient of the signed (red minus 
blue) color density]: 

f(x) -= ~ c, ~ [rj(x + c~) - bj(x + c~)] (6) 
i j 

The work W performed by the flux against the field is then 

W(r, b) = - f .  q(r, b) (7) 

Here we have incorporated repulsive forces between different colors in 
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addition to attractive forces between like colors. The result of a collision, 
r ~ r', b ~ b', is determined by the solution to the mimimization problem 

W(r', b') = min W(r", b") (8) 
r " ,  b "  

subject to the constraints of colored mass conservation 

r;' = ~ r~, ~ b;' = ~ b~ (9) 
i i i i 

and colorblind momentum conservation 

c~(r~' + b;') = ~ c~(r i + bi) (10) 
i i 

If the solution is nonunique, the outcome of a collision is chosen with equal 
apriori weight from the set of configurations that satisfy (8)-(10). In the 
resulting configuration, particles of each color will be preferentially moving 
toward concentrations of like color and away from concentrations of unlike 
color. Once collisions have occurred, each particle moves one lattice unit in 
its direction of motion. 

In our implementation, the collision rules determined by Eq. (5)-(10) 
are stored in a table. Because the number of unique configurations at a site 
and its six nearest neighbors is large, (37) 7 , we reduce the size of the table 
by noting that the magnitude of a nonzero color field f does not affect the 
minimization in Eq. (8). Thus, we need only specify a unit vector ~; in prac- 
tice, we allow only N =  36 discrete values ~k = (cos(2nk/N), sin(2~k/N)), 
k = 1 ..... N. The input to the table then consists of an integer representing 
the conserved quantities in Eq. (9) and (10) in addition to the number k. 
Our implementation has been coded in C and runs at approximately 
12,000 site updates per second on a Sun 3/160 workstation. 

Figure 1 illustrates the nonequilibrium behavior of the two-fluid 
automaton. The initial configuration is a random mixture. The reduced 
density is d = p/7 = 0.75; p is the average number of particles per site. There 
are 1282 sites; boundaries are periodic, both horizontally and vertically. 
The initial distribution of particles is random, with reds and blues equally 
probable. In the plots, a site is black if the number of blue particles at that 
site is greater than or equal to the number of red particles; otherwise, it is 
gray. No averaging has been performed. 

The automaton quickly acts to smooth out all surfaces, producing a 
number of 2D bubbles. Random motion eventually causes small bubbles to 
meet, producing even larger bubbles. The final equilibrium state is full 
separation, with plane horizontal interfaces. 
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Quantitative tests show that the automaton is indeed modeling surface 
tension. We test the validity of Eq. (4) for the simplified case of no flow. 
This boundary condition is then Laplace's formula, (13) 

P l - P 2 = ~ / R  (11) 

Figure 2 is a plot of Ap = Pl - P2 versus l /R, where R is the radius of a 2D 
bubble. Pressure is calculated from the equation of state p --- 3p/7 given in 
ref. 3. The tests were performed by initializing a lattice of size (4R) 2 with a 
blue bubble of radius R in a sea of red, with d=  0.70 and u -  0 in both 
phases. The bubble maintains its gross shape; Ap is measured by com- 
puting the difference between the average density of sites occupied by only 
blue particles and the average density of sites occupied by only red 
particles. 2 R varies from 16 to 48; the resulting density contrast ranges from 
about 0.03 to 0.01 particle per site. As with real bubbles, these 2D bubbles 
undergo free oscillations evident in plots of Ap versus time. Here we have 
simply averaged Ap over 2000 time steps beginning at time step 500. For 
each R, this calculation is performed four times with different initial 
configurations. The graph shows the mean and standard deviation of the 

2 Empty sites and mixed sites containing both red and blue particles are not counted in the 
estimation of the density difference. The discounting of empty sites results in a negligible 
error smaller than (1 - d ) V ~  2.2 x 10 -4 times the true density difference�9 Observations show 
that mixed sites virtually always occur on the perimeter of the bubble; indeed, in the exam- 
ple of Fig. 1 an average of only 2 3 mixed sites may be found away from the interfaces at 
any one time after 100 time steps. Measurements made in the bubble tests show that the 
number of mixed sites is approximately 1.3 x 2hR. 
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Fig. 2. Numerical confirmation of Laplace's formula, Eq, (11). R is the radius of a 2D 
bubble. The surface tension is given by the slope of the straight line. 
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averages computed in the four runs, for each value of R, compared to the 
best-fitting line through the origin. As predicted by Eq.( l l ) ,  Ap is 
proportional to l/R; the slope a = 0.246 _+ 0.002 is the surface tension. 

Figure 3 depicts the continuous variation of surface tension with 
density. Surface tension is low at low densities, primarily because fewer 
particles provide fewer choices in the minimization of W. At unusually high 
densities the surface tension is also low, but surfaces do not break; a 
vanishes at d =  1 because Ap is necessarily zero at maximum density. 
Surface tension also vanishes for d ~< 0.4, the low densities typical of most 
lattice-gas computations. However, because our single-color model is 
invariant under duality (exchange of particles and holes), the 
hydrodynamics of single-color simulations at densities d and 1 -  d are 
equivalent.~3) 

We emphasize that in regions of only one color, our model is precisely 
modelII! of ref. 6 with the exception that the possible outcomes of a 
collision in our model include the precollision state. The only consequence 
of this difference is an increase in viscosity; the model's adherence to the 
Navier-Stokes equations is unchanged. A theoretical prediction of the 
Laplace law, however, remains an outstanding problem. One promising 
approach might be to use the mechanical definition of surface tension, 
a = ~-oo [ P - P T ( Z )  "] dz, where p is the component of the pressure tensor 
normal to the interface (in the x , y  plane) and Pr is the transverse 
component. (14) A theoretical expression for PT might be obtainable from 
lattice-gas theory, (1'3'4) but it is made complicated here by our unusual 
collision rules. 

Of the two boundary conditions, we have quantitatively studied only 
Eq. (4). Because we have observed the continuous flow of surfaces without 
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Fig. 3. Numerical  measurements  of surface tension as a function of reduced density. 
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rupture, we take the automaton's adherence to Eq. (3) to be self-evident for 
u measured from the lattice. However, the momentum equation (2) is 
formally attained only after a rescaling of variables to attain Galilean 
invariance(X'3); this rescaling does not apply to the velocity of the interface. 
Thus, our model as it stands lacks Galilean invariance, d'Humi~res et  al. (7) 

have shown, however, that the FHP collision rules can be tuned to provide 
Galilean invariance without a rescaling of variables; their corrections 
should be applicable to our model as well. 

We cbmment briefly on extensions of the model. Fluids of different 
viscosities may be modeled by either limiting the set of possible collisions 
in one fluid or by decreasing the frequency of collisions in one fluid. 
Buoyant forces may be modeled using the techniques described in ref. 9. 
Extensions to 3D (8) are straightforward in principle. Flow of three or more 
fluids can be modeled by dispensing with the unified expressions for the 
flux and field given by Eq. (5) and (6), and instead defining red fields, blue 
fields, and, say, green fields, and likewise for the fluxes. The (possibly 
weighted) sum of the work of each flux against the corresponding field of 
the same color would then be minimized. No repulsive forces would be 
modeled, but we do not consider them necessary. 

We have presented a new model, based on discrete dynamics, for the 
solution of the flow equations for two immiscible fluids. Surface tension 
and phase separation, two fundamental phenomena of immiscible fluid 
mixtures, have been demonstrated to arise from the model. Applications to 
problems in two-phase flow should now be straightforward. In particular, 
we expect that the model will be useful for the study of a variety of two- 
fluid instability phenomena, possibly with increased versatility and 
efficiency over other methods. ~aS) The simplicity of this automaton for two- 
phase flow should thus provide not only a novel approach to the study of 
fluid mixtures, but also possibly the ability to study computationally what 
has heretofore been accessible only be experiment. 
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